
305

CHAPTER 11

Layer 4 Protocols

Chapter 10 discussed the Linux IPsec subsystem and its implementation. In this chapter, I will discuss four transport 
layer (L4) protocols. I will start our discussion with the two most commonly used transport layer (L4) protocols, 
the User Datagram Protocol (UDP) and the Transmission Control Protocol (TCP), which are used for many years. 
Subsequently, I will discuss the newer Stream Control Transmission Protocol (SCTP) and Datagram Congestion 
Control Protocol (DCCP) protocols, which combine features of TCP and UDP. I will start the chapter with describing 
the sockets API, which is the interface between the transport layer (L4) and the userspace. I will discuss how sockets 
are implemented in the kernel and how data flows from the userspace to the transport layer and from the transport 
layer to the userspace. I will also deal with passing packets from the network layer (L3) to the transport layer (L4) 
when working with these protocols. I will discuss here mainly the IPv4 implementation of these four protocols, though 
some of the code is common to IPv4 and IPv6.

Sockets
Every operating system has to provide an entry point and an API to its networking subsystems. The Linux kernel 
networking subsystem provides an interface to the userspace by the standard POSIX socket API, which was specified 
by the IEEE (IEEE Std 1003.1g-2000, describing networking APIs, also known as POSIX.1g). This API is based on 
Berkeley sockets API (also known as BSD sockets), which originated from the 4.2BSD Unix operating system and is an 
industry standard in several operating systems. In Linux, everything above the transport layer belongs to the userspace. 
Conforming to the Unix paradigm that “everything is a file,” sockets are associated with files, as you will see later in this 
chapter. Using the uniform sockets API makes porting applications easier. These are the available socket types:

•฀ Stream sockets (SOCK_STREAM): Provides a reliable, byte-stream communication channel. 
TCP sockets are an example of stream sockets.

•฀ Datagram sockets (SOCK_DGRAM): Provides for exchanging of messages (called 
datagrams). Datagram sockets provide an unreliable communication channel, because 
packets can be discarded, arrive out of order, or be duplicated. UDP sockets are an example  
of datagram sockets.

•฀ Raw sockets (SOCK_RAW): Uses direct access to the IP layer, and allows sending or receiving 
traffic without any protocol-specific, transport-layer formatting.

•฀ Reliably delivered message (SOCK_RDM): Used by the Transparent Inter-Process 
Communication (TIPC), which was originally developed at Ericsson from 1996–2005 and was 
used in cluster applications. See http://tipc.sourceforge.net.

http://tipc.sourceforge.net/


CHAPTER 11 ■ LAYER 4 PROTOCOLS

306

•฀ Sequenced packet stream (SOCK_SEQPACKET): This socket type is similar to the  
SOCK_STREAM type and is also connection-oriented. The only difference between these 
types is that record boundaries are maintained using the SOCK_SEQPACKET type. Record 
boundaries are visible to the receiver via the MSG_EOR (End of record) flag. The Sequenced 
packet stream type is not discussed in this chapter.

•฀ DCCP sockets (SOCK_DCCP): The Datagram Congestion Control Protocol is a transport 
protocol that provides a congestion-controlled flow of unreliable datagrams. It combines 
features of both TCP and UDP. It is discussed in a later section of this chapter.

•฀ Data links sockets (SOCK_PACKET): The SOCK_PACKET is considered obsolete in the  
AF_INET family. See the __sock_create() method in net/socket.c.

The following is a description of some methods that the sockets API provides (all the kernel methods that appear 
in the following list are implemented in net/socket.c):

•฀ socket(): Creates a new socket; will be discussed in the subsection “Creating Sockets.”

•฀ bind(): Associates a socket with a local port and an IP address; implemented in the kernel by 
the sys_bind() method.

•฀ send(): Sends a message; implemented in the kernel by the sys_send() method.

•฀ recv(): Receives a message; implemented in the kernel by the sys_recv() method.

•฀ listen(): Allows a socket to receive connections from other sockets; implemented in the 
kernel by the sys_listen() method. Not relevant to datagram sockets.

•฀ accept(): Accepts a connection on a socket; implemented in the kernel by the sys_accept() 
method. Relevant only with connection-based socket types (SOCK_STREAM,  
SOCK_SEQPACKET).

•฀ connect(): Establishes a connection to a peer socket; implemented in the kernel by the  
sys_connect() method. Relevant to connection-based socket types (SOCK_STREAM or 
SOCK_SEQPACKET) as well as to connectionless socket types (SOCK_DGRAM).

This book focuses on the kernel network implementation, so I will not delve into the details of the userspace 
socket API. If you want more information, I recommend the following books:

•฀ Unix Network Programming, Volume 1: The Sockets Networking API (3rd Edition) by W. 
Richard Stevens, Bill Fenner, and Andrew M. Rudoff (Addison-Wesley Professional, 2003).

•฀ The Linux Programming Interface by Michael Kerrisk (No Starch Press, 2010).

Note ■  All the socket API calls are handled by the socketcall() method, in net/socket.c.

Now that you have learned about some socket types, you will learn what happens in the kernel when a socket is 
created. In the next section, I will introduce the two structures that implement sockets: struct socket and struct 
sock. I will also describe the difference between them and I will describe the msghdr struct and its members.

Creating Sockets
There are two structures that represent a socket in the kernel: the first is struct socket, which provides an interface 
to the userspace and is created by the sys_socket() method. I will discuss the sys_socket() method later in this 
section. The second is struct sock, which provides an interface to the network layer (L3). Since the sock structure 



CHAPTER 11 ■ LAYER 4 PROTOCOLS

307

resides in the network layer, it is a protocol agnostic structure. I will discuss the sock structure also later in this section. 
The socket structure is short:
 
struct socket {
        socket_state            state;
 
        kmemcheck_bitfield_begin(type);
        short                   type;
        kmemcheck_bitfield_end(type);
 
        unsigned long           flags;
 
        . . .
 
        struct file             *file;
        struct sock             *sk;
        const struct proto_ops  *ops;
};
 
(include/linux/net.h)

The following is a description of the members of the socket structure:

•฀ state: A socket can be in one of several states, like SS_UNCONNECTED, SS_CONNECTED, and 
more. When an INET socket is created, its state is SS_UNCONNECTED; see the inet_create() 
method. After a stream socket connects successfully to another host, its state is SS_CONNECTED. 
See the socket_state enum in include/uapi/linux/net.h.

•฀ type: The type of the socket, like SOCK_STREAM or SOCK_RAW; see the enum sock_type in 
include/linux/net.h.

•฀ flags: The socket flags; for example, the SOCK_EXTERNALLY_ALLOCATED flag is set in the 
TUN device when allocating a socket, not by the socket() system call. See the tun_chr_open() 
method in drivers/net/tun.c. The socket flags are defined in include/linux/net.h.

•฀ file: The file associated with the socket.

•฀ sk: The sock object associated with the socket. The sock object represents the interface to the 
network layer (L3). When creating a socket, the associated sk object is created. For example, 
in IPv4, the inet_create() method, which is invoked when creating a socket, allocates a sock 
object, sk, and associates it with the specified socket object.

•฀ ops: This object (an instance of the proto_ops object) consists mostly of callbacks for this 
socket, like connect(), listen(), sendmsg(), recvmsg(), and more. These callbacks are 
the interface to the userspace. The sendmsg() callback implements several library-level 
routines, such as write(), send(), sendto(), and sendmsg(). Quite similarly, the recvmsg() 
callback implements several library-level routines, such as read(), recv(), recvfrom(), and 
recvmsg(). Each protocol defines a proto_ops object of its own according to the protocol 
requirements. Thus, for TCP, its proto_ops object includes a listen callback, inet_listen(), 
and an accept callback, inet_accept(). On the other hand, the UDP protocol, which does not 
work in the client-server model, defines the listen() callback to be the sock_no_listen() 
method, and it defines the accept() callback to be the sock_no_accept() method. The only 
thing that both these methods do is return an error of –EOPNOTSUPP. See Table 11-1 in the 
“Quick Reference” section at the end of this chapter for the definitions of the TCP and UDP 
proto_ops objects. The proto_ops structure is defined in include/linux/net.h.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

308

The sock structure is the network-layer representation of sockets; it is quite long, and following here are only 
some of its fields that are important for our discussion:
 
struct sock {
 
        struct sk_buff_head     sk_receive_queue;
        int                     sk_rcvbuf;
 
        unsigned long           sk_flags;
 
        int                     sk_sndbuf;
        struct sk_buff_head     sk_write_queue;
        . . .
        unsigned int            sk_shutdown  : 2,
                                sk_no_check  : 2,
                                sk_protocol  : 8,
                                sk_type      : 16;
        . . .
 
        void                    (*sk_data_ready)(struct sock *sk, int bytes);
        void                    (*sk_write_space)(struct sock *sk);
};

(include/net/sock.h)
 

The following is a description of the members of the sock structure:

•฀ sk_receive_queue: A queue for incoming packets.

•฀ sk_rcvbuf: The size of the receive buffer in bytes.

•฀ sk_flags: Various flags, like SOCK_DEAD or SOCK_DBG; see the sock_flags enum definition 
in include/net/sock.h.

•฀ sk_sndbuf: The size of the send buffer in bytes.

•฀ sk_write_queue: A queue for outgoing packets.

Note ■  You will see later, in the “TCP Socket Initialization” section, how the sk_rcvbuf and the sk_sndbuf are  

initialized, and how this can be changed by writing to procfs entries.

•฀ sk_no_check: Disable checksum flag. Can be set with the SO_NO_CHECK socket option.

•฀ sk_protocol: This is the protocol identifier, which is set according to the third parameter 
(protocol) of the socket() system call.

•฀ sk_type: The type of the socket, like SOCK_STREAM or SOCK_RAW; see the enum sock_type 
in include/linux/net.h.

•฀ sk_data_ready: A callback to notify the socket that new data has arrived.

•฀ sk_write_space: A callback to indicate that there is free memory available to proceed with 
data transmission.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

309

Creating sockets is done by calling the socket() system call from userspace:

sockfd = socket(int socket_family, int socket_type, int protocol);

The following is a description of the parameters of the socket() system call:

•฀ socket_family: Can be, for example, AF_INET for IPv4, AF_INET6 for IPv6, or AF_UNIX 
for UNIX domain sockets, and so on. (UNIX domain sockets is a form of Inter Process 
Communication (IPC), which allows communication between processes that are running on 
the same host.)

•฀ socket_type: Can be, for example, SOCK_STREAM for stream sockets, SOCK_DGRAM for 
datagram sockets, or SOCK_RAW for raw sockets, and so on.

•฀ protocol: Can be any of the following:

0 or IPPROTO_TCP for TCP sockets.•฀

0 or IPPROTO_UDP for UDP sockets.•฀

A valid IP protocol identifier (like IPPROTO_TCP or IPPROTO_ICMP) for raw sockets; see •฀
RFC 1700, “Assigned Numbers.”

The return value of the socket() system call (sockfd) is the file descriptor that should be passed as a parameter 
to subsequent calls with this socket. The socket() system call is handled in the kernel by the sys_socket() method. 
Let’s take a look at the implementation of the socket() system call:
 
SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
{
        int retval;
        struct socket *sock;
        int flags;
 
        . . .
        retval = sock_create(family, type, protocol, &sock);
        if (retval < 0)
                goto out;
        . . .
        retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
        if (retval < 0)
                goto out_release;
out:
        . . .
        return retval;
 
}

(net/socket.c)
 

The sock_create() method calls the address-family specific socket creation method, create(); in the case of IPv4, 
it is the inet_create() method. (See the inet_family_ops definition in net/ipv4/af_inet.c.) The inet_create() 
method creates the sock object (sk) that is associated with the socket; the sock object represents the network layer 
socket interface. The sock_map_fd() method returns an fd (file descriptor) that is associated with the socket; normally, 
the socket() system call returns this fd.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

310

Sending data from a userspace socket, or receiving data in a userspace socket from the transport layer, is handled 
in the kernel by the sendmsg() and recvmsg() methods, respectively, which get a msghdr object as a parameter.  
The msghdr object includes the data blocks to send or to fill, as well as some other parameters.
 
struct msghdr {
        void             *msg_name;       /* Socket name                                         */
        int              msg_namelen;     /* Length of name                                      */
        struct iovec     *msg_iov;        /* Data blocks                                         */
        __kernel_size_t  msg_iovlen;      /* Number of blocks                                    */
        void             *msg_control;    /* Per protocol magic (eg BSD file descriptor passing) */
        __kernel_size_t  msg_controllen;  /* Length of cmsg list                                 */
        unsigned int     msg_flags;
};

(include/linux/socket.h)
 

The following is a description of some of the important members of the msghdr structure:

•฀ msg_name: The destination socket address. To get the destination socket, you usually cast  
the msg_name opaque pointer to a struct sockaddr_in pointer. See, for example, the  
udp_sendmsg() method.

•฀ msg_namelen: The length of the address.

•฀ iovec: A vector of data blocks.

•฀ msg_iovlen: The number of blocks in the iovec vector.

•฀ msg_control: Control information (also known as ancillary data).

•฀ msg_controllen: The length of the control information.

•฀ msg_flags: Flags of received messages, like MSG_MORE. (See, for example, the section 
“Sending Packets with UDP” later in this chapter.)

Note that the maximum control buffer length that the kernel can process is limited per socket by the value in 
sysctl_optmem_max (/proc/sys/net/core/optmem_max).

In this section, I described the kernel implementation of the socket and the msghdr struct, which is used when 
sending and receiving packets. In the next section, I will start my discussion about transport layer protocols (L4) by 
describing the UDP protocol, which is the simplest among the protocols to be discussed in this chapter.

UDP (User Datagram Protocol)
The UDP protocol is described in RFC 768 from 1980. The UDP protocol is a thin layer around the IP layer, adding 
only port, length, and checksum information. It dates back as early as 1980 and provides unreliable, message-oriented 
transport without congestion control. Many protocols use UDP. I will mention, for example, the RTP protocol (Real-time 
Transport Protocol), which is used for delivery of audio and video over IP networks. Such a type of traffic can tolerate 
some packet loss. The RTP is commonly used in VoIP applications, usually in conjunction with SIP (Session Initiation 
Protocol) based clients.(It should be mentioned here that, in fact, the RTP protocol can also use TCP, as specified in 
RFC 4571, but this is not used much.) I should mention here UDP-Lite, which is an extension of the UDP protocol to 



CHAPTER 11 ■ LAYER 4 PROTOCOLS

311

support variable-length checksums (RFC 3828). Most of UDP-Lite is implemented in net/ipv4/udplite.c, but you will 
encounter it also in the main UDP module, net/ipv4/udp.c. The UDP header length is 8 bytes:
 
struct udphdr {
        __be16  source;
        __be16  dest;
        __be16  len;
        __sum16 check;
};
(include/uapi/linux/udp.h)
 

The following is a description of the members of the UDP header:

•฀ source: The source port (16 bit), in the range 1-65535.

•฀ dest: The destination port (16 bit), in the range 1-65535.

•฀ len: The length in bytes (the payload length and the UDP header length).

•฀ checksum: The checksum of the packet.

Figure 11-1 shows a UDP header.

Figure 11-1. A UDP header (IPv4)

In this section, you learned about the UDP header and its members. To understand how the userspace 
applications, which use the sockets API, communicate with the kernel (sending and receiving packets), you should 
know about how UDP initialization is done, which is described in the next section.

UDP Initialization
We define the udp_protocol object (net_protocol object) and add it with the inet_add_protocol() method. This 
sets the udp_protocol object to be an element in the global protocols array (inet_protos).
 
static const struct net_protocol udp_protocol = {
        .handler =      udp_rcv,
        .err_handler =  udp_err,
        .no_policy =    1,
        .netns_ok =     1,
};
(net/ipv4/af_inet.c)
 



CHAPTER 11 ■ LAYER 4 PROTOCOLS

312

static int __init inet_init(void)
{
        . . .
        if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0)
                pr_crit("%s: Cannot add UDP protocol\n", __func__);
        . . .
}
(net/ipv4/af_inet.c)
 

We further define a udp_prot object and register it by calling the proto_register() method. This object contains 
mostly callbacks; these callbacks are invoked when opening a UDP socket in userspace and using the socket API.  
For example, calling the setsockopt() system call on a UDP socket will invoke the udp_setsockopt() callback.
 
struct proto udp_prot = {
         .name              = "UDP",
         .owner             = THIS_MODULE,
         .close             = udp_lib_close,
         .connect           = ip4_datagram_connect,
         .disconnect        = udp_disconnect,
         .ioctl             = udp_ioctl,
         . . .
         .setsockopt        = udp_setsockopt,
         .getsockopt        = udp_getsockopt,
         .sendmsg           = udp_sendmsg,
         .recvmsg           = udp_recvmsg,
         .sendpage          = udp_sendpage,
         . . .
};
 
(net/ipv4/udp.c)
int __init inet_init(void)
{
    int rc = -EINVAL;
    . . .
    rc = proto_register(&udp_prot, 1);
    . . .
 
}
(net/ipv4/af_inet.c)
 

Note ■  The UDP protocol, along with other core protocols, is initialized via the inet_init() method at boot-time.

Now that you know about UDP initialization and its callback for sending packets, which is the udp_sendmsg() 
callback of the udp_prot object that was shown in this section, it is time to learn how packets are sent by UDP in IPV4.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

313

Sending Packets with UDP
Sending data from a UDP userspace socket can be done by several system calls: send(), sendto(), sendmsg(), and 
write(); eventually all of them are handled by the udp_sendmsg() method in the kernel. The userspace application builds 
a msghdr object that contains the data blocks and passes this msghdr object to the kernel. Let’s take a look at this method:
 
int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
                size_t len)
{
 

In general, UDP packets are sent immediately. This behavior can be changed with the UDP_CORK socket option 
(introduced in kernel 2.5.44), which causes packet data passed to the udp_sendmsg() method to be accumulated until 
the final packet is released by unsetting the option. The same result can be achieved by setting the MSG_MORE flag:
 
        int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
        struct inet_sock *inet = inet_sk(sk);
              . . .
 

First we make some sanity checks. The specified len, for example, cannot be greater than 65535 (remember that 
the len field in the UDP header is 16 bits):
 
        if (len > 0xFFFF)
                 return -EMSGSIZE;
 

We need to know the destination address and the destination port in order to build a flowi4 object, which is 
needed for sending the SKB with the udp_send_skb() method or with the ip_append_data() method. The destination 
port should not be 0. There are two cases here: the destination is specified in the msg_name of the msghdr, or the 
socket is connected and its state is TCP_ESTABLISHED. Note that UDP (in contrast to TCP) is almost a fully stateless 
protocol. The notion of TCP_ESTABLISHED in UDP mostly means that the socket has passed some sanity checks.
 
        if (msg->msg_name) {
                struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
                if (msg->msg_namelen < sizeof(*usin))
                        return -EINVAL;
                if (usin->sin_family != AF_INET) {
                        if (usin->sin_family != AF_UNSPEC)
                                return -EAFNOSUPPORT;
                }
  
                daddr = usin->sin_addr.s_addr;
                dport = usin->sin_port;
 

Linux code honors the fact that zero UDP/TCP ports are reserved by the IANA. The reservation of port 0 in 
TCP and UDP dates back to RFC 1010, “Assigned Numbers” (1987), and it was still present in RFC 1700, which was 
obsoleted by the online database (see RFC 3232), where they are still present. See  
www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml.
 
                if (dport == 0)
                        return -EINVAL;
        } else {
                if (sk->sk_state != TCP_ESTABLISHED)
                        return -EDESTADDRREQ;

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml


CHAPTER 11 ■ LAYER 4 PROTOCOLS

314

                daddr = inet->inet_daddr;
                dport = inet->inet_dport;
                /* Open fast path for connected socket.
                   Route will not be used, if at least one option is set.
                 */
                connected = 1;
}
 

               . . .
 

A userspace application can send control information (also known as ancillary data) by setting msg_control and 
msg_controllen in the msghdr object. Ancillary data is, in fact, a sequence of cmsghdr objects with appended data. 
(For more details, see man 3 cmsg.) You can send and receive ancillary data by calling the sendmsg() and recvmsg() 
methods, respectively. For example, you can create an IP_PKTINFO ancillary message to set a source route to an 
unconnected UDP socket. (See man 7 ip.) When msg_controllen is not 0, this is a control information message, 
which is handled by the ip_cmsg_send() method. The ip_cmsg_send() method builds an ipcm_cookie (IP Control 
Message Cookie) object by parsing the specified msghdr object. The ipcm_cookie structure includes information that 
is used further when processing the packet. For example, when using an IP_PKTINFO ancillary message, you can set 
the source address by setting an address field in the control messages, which eventually sets the addr in the ipcm_
cookie object. The ipcm_cookie is a short structure:
 

struct ipcm_cookie {
        __be32                  addr;
        int                     oif;
        struct ip_options_rcu   *opt;
        __u8                    tx_flags;
};
(include/net/ip.h)

Let’s continue our discussion of the udp_sendmsg() method:
 

         if (msg->msg_controllen) {
                 err = ip_cmsg_send(sock_net(sk), msg, &ipc);
                 if (err)
                         return err;
                 if (ipc.opt)
                         free = 1;
                 connected = 0;
         }
         . . .
         if (connected)
                 rt = (struct rtable *)sk_dst_check(sk, 0);
         . . .
 

If the routing entry is NULL, a routing lookup should be performed:
 

        if (rt == NULL) {
                struct net *net = sock_net(sk);
          

                fl4 = &fl4_stack;
                flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
                                   RT_SCOPE_UNIVERSE, sk->sk_protocol,
                                   inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
                                   faddr, saddr, dport, inet->inet_sport);
  



CHAPTER 11 ■ LAYER 4 PROTOCOLS

315

                security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
                rt = ip_route_output_flow(net, fl4, sk);
                if (IS_ERR(rt)) {
                        err = PTR_ERR(rt);
                        rt = NULL;
                        if (err == -ENETUNREACH)
                                IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
                        goto out;
                }
 
        . . .
 

In kernel 2.6.39, a lockless transmit fast path was added. This means that when the corking feature is not set, we 
do not hold the socket lock and we call the udp_send_skb() method, and when the corking feature is set, we hold the 
socket lock by calling the lock_sock() method and then send the packet:
 
        /* Lockless fast path for the non-corking case. */
        if (!corkreq) {
                skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
                                  sizeof(struct udphdr), &ipc, &rt,
                                  msg->msg_flags);
                err = PTR_ERR(skb);
                if (!IS_ERR_OR_NULL(skb))
                         err = udp_send_skb(skb, fl4);
                 goto out;
        }
 

Now we handle the case when the corking feature is set:
 
       lock_sock(sk);
do_append_data:
        up->len += ulen;
 

The ip_append_data() method buffers the data for transmission but does not transmit it yet. Subsequently 
calling the udp_push_pending_frames() method will actually perform the transmission. Note that the  
udp_push_pending_frames() method also handles fragmentation by the specified getfrag callback:
 
        err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
                             sizeof(struct udphdr), &ipc, &rt,
                             corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
 

If the method failed, we should flush all pending SKBs. This is achieved by calling the udp_flush_pending_frames() 
method, which will free all the SKBs in the write queue of the socket (sk_write_queue) by the ip_flush_pending_frames() 
method:
 
        if (err)
                udp_flush_pending_frames(sk);
        else if (!corkreq)
                err = udp_push_pending_frames(sk);
        else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
                up->pending = 0;
        release_sock(sk);
 



CHAPTER 11 ■ LAYER 4 PROTOCOLS

316

You learned in this section about sending packets with UDP. Now, to complete our discussion about UDP in IPv4, 
it’s time to learn about how packets from the network layer (L3) are received with UDP in IPv4.

Receiving Packets from the Network Layer (L3) with UDP
The main handler for receiving UDP packets from the network layer (L3) is the udp_rcv() method. All it does is invoke 
the __udp4_lib_rcv() method (net/ipv4/udp.c):
 
int udp_rcv(struct sk_buff *skb)
{
        return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
}
 

Let’s take a look at the __udp4_lib_rcv() method:
 
int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
                   int proto)
{
        struct sock *sk;
        struct udphdr *uh;
        unsigned short ulen;
        struct rtable *rt = skb_rtable(skb);
        __be32 saddr, daddr;
        struct net *net = dev_net(skb->dev);
        . . .
 

We fetch the UDP header, header length, and source and destination addresses from the SKB:
 
        uh   = udp_hdr(skb);
        ulen = ntohs(uh->len);
        saddr = ip_hdr(skb)->saddr;
        daddr = ip_hdr(skb)->daddr;
 

We will skip some sanity checks that are being performed, like making sure that the UDP header length is not 
greater than the length of the packet and that the specified proto is the UDP protocol identifier (IPPROTO_UDP). If 
the packet is a broadcast or a multicast packet, it will be handled by the __udp4_lib_mcast_deliver() method:
 
        if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
             return __udp4_lib_mcast_deliver(net, skb, uh,
                                                saddr, daddr, udptable);
 

Next we perform a lookup in the UDP sockets hash table:
 
        sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
              if (sk != NULL) {
 



CHAPTER 11 ■ LAYER 4 PROTOCOLS

317

We arrive here because the lookup we performed found a matching socket. So process the SKB further by calling 
the udp_queue_rcv_skb() method, which invokes the generic sock_queue_rcv_skb() method, which in turn adds the 
specified SKB to the tail of sk->sk_receive_queue (by calling the __skb_queue_tail() method):
 
        int ret = udp_queue_rcv_skb(sk, skb);
        sock_put(sk);
  
        /* a return value > 0 means to resubmit the input, but
        * it wants the return to be -protocol, or 0
        */
        if (ret > 0)
             return -ret;
 

Everything is fine; return 0 to denote success:
 
            return 0;
        }
        . . .
  

We arrived here because the lookup for a socket failed. This means that we should not handle the packet. This 
can occur, for example, when there is no listening UDP socket on the destination port. If the checksum is incorrect, 
we should drop the packet silently. If it is correct, we should send an ICMP reply back to the sender. This should be an 
ICMP message of “Destination Unreachable” with code of “Port Unreachable.” Further on, we should free the packet 
and update an SNMP MIB counter:
 
        /* No socket. Drop packet silently, if checksum is wrong */
        if (udp_lib_checksum_complete(skb))
            goto csum_error;
 

The next command increments the UDP_MIB_NOPORTS (NoPorts) MIB counter. Note that you can query 
various UDP MIB counters by cat /proc/net/snmp or by netstat –s.
 
        UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
        icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
  
        /*
        * Hmm.  We got an UDP packet to a port to which we
        * don't wanna listen.  Ignore it.
        */
        kfree_skb(skb);
        return 0;
 

Figure 11-2 illustrates our discussion in this section about receiving UDP packets.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

318

Our discussion about UDP is now finished. The next section describes the TCP protocol, which is the most 
complex among the protocols discussed in this chapter.

TCP (Transmission Control Protocol)
The TCP protocol is described in RFC 793 from 1981. During the years since then, there have been many updates, 
variations, and additions to the base TCP protocol. Some additions were for specific types of networks (high-speed, 
satellite), whereas others were for performance improvements.

The TCP protocol is the most commonly used transport protocol on the Internet today. Many well-known 
protocols are based upon TCP. The most well-known protocol is probably HTTP, and we should also mention here 
some other well-known protocols such as ftp, ssh, telnet, smtp, and ssl. The TCP protocol provides a reliable and 
connection-oriented transport, as opposed to UDP. Transmission is made reliable by using sequence numbers and 
acknowledgments.

Figure 11-2. Receiving UDP packets



CHAPTER 11 ■ LAYER 4 PROTOCOLS

319

TCP is a very complex protocol; we will not discuss all the details, optimizations, and nuances of the TCP 
implementation in this chapter, as this requires a separate book in itself. TCP functionality consists of two ingredients: 
management of connections, and transmitting and receiving data. We will focus in this section on TCP initialization 
and TCP connection setup, which pertains to the first ingredient, connections management, and on receiving and 
sending packets, which pertains to the second ingredient. These are the important basics that enable further delving 
into the TCP protocol implementation. We should note that the TCP protocol self-regulates the byte-stream flow 
via congestion control. Many different congestion-control algorithms have been specified, and Linux provides 
a pluggable and configurable architecture to support a wide variety of algorithms. Delving into the details of the 
individual congestion-control algorithms is beyond the scope of this book.

Every TCP packet starts with a TCP header. You must learn about the TCP header in order to understand the 
operation of TCP. The next section describes the IPv4 TCP header.

TCP Header
The TCP header length is 20 bytes, but it is scalable up to 60 bytes when using TCP options:
 
struct tcphdr {
        __be16  source;
        __be16  dest;
        __be32  seq;
        __be32  ack_seq;
#if defined(__LITTLE_ENDIAN_BITFIELD)
        __u16   res1:4,
                doff:4,
                fin:1,
                syn:1,
                rst:1,
                psh:1,
                ack:1,
                urg:1,
                ece:1,
                cwr:1;
#elif defined(__BIG_ENDIAN_BITFIELD)
        __u16   doff:4,
                res1:4,
                cwr:1,
                ece:1,
                urg:1,
                ack:1,
                psh:1,
                rst:1,
                syn:1,
                fin:1;
#else
#error  "Adjust your <asm/byteorder.h> defines"



CHAPTER 11 ■ LAYER 4 PROTOCOLS

320

#endif
        __be16  window;
        __sum16 check;
        __be16  urg_ptr;
};

(include/uapi/linux/tcp.h)
 

The following is a description of the members of the tcphdr structure:

•฀ source: The source port (16 bit), in the range 1-65535.

•฀ dest: The destination port (16 bit), in the range 1-65535.

•฀ seq: The Sequence number (32 bits).

•฀ ack_seq: Acknowledgment number (32 bits). If the ACK flag is set, the value of this field is the 
next sequence number that the receiver is expecting.

•฀ res1: Reserved for future use (4 bits). It should always be set to 0.

•฀ doff: Data offset (4 bits). The size of the TCP header in multiplies of 4 bytes; the minimum is 5 
(20 bytes) and the maximum is 15 (60 bytes).

The following are the TCP flags; each is 1 bit:

•฀ fin: No more data from sender (when one of the endpoints wants to close the connection).

•฀ syn: The SYN flag is initially sent when establishing the 3-way handshake between two 
endpoints.

•฀ rst: The Reset flag is used when a segment that is not intended for the current connection 
arrives.

•฀ psh: The data should be passed to userspace as soon as possible.

•฀ ack: Signifies that the acknowledgment number (ack_seq) value in the TCP header is 
meaningful.

•฀ urg: Signifies that the urgent pointer is meaningful.

•฀ ece: ECN - Echo flag. ECN stands for “Explicit Congestion Notification.” ECN provides a 
mechanism that sends end-to-end notification about network congestion without dropping 
packets. It was added by RFC 3168, “The Addition of Explicit Congestion Notification (ECN) to 
IP,” from 2001.

•฀ cwr: Congestion Window Reduced flag.

•฀ window: TCP receive window size in bytes (16 bit).

•฀ check: Checksum of the TCP header and TCP data.

•฀ urg_ptr: Has significance only when the urg flag is set. It represents an offset from the 
sequence number indicating the last urgent data byte (16 bit).

Figure 11-3 shows a diagram of a TCP header.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

321

In this section, I described the IPv4 TCP header and its members. You saw that, as opposed to the UDP header, 
which has only 4 members, the TCP header has a lot more members, since TCP is a much more complex protocol. 
In the following section, I will describe how TCP initialization is done so that you will learn how and where the 
initialization of the callbacks for receiving and sending TCP packets takes place.

TCP Initialization
We define the tcp_protocol object (net_protocol object) and add it with the inet_add_protocol() method:
 
static const struct net_protocol tcp_protocol = {
        .early_demux    =       tcp_v4_early_demux,
        .handler        =       tcp_v4_rcv,
        .err_handler    =       tcp_v4_err,
        .no_policy      =       1,
        .netns_ok       =       1,
};

(net/ipv4/af_inet.c)
 
static int __init inet_init(void)
  {
        . . .
        if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0)
            pr_crit("%s: Cannot add TCP protocol\n", __func__);
        . . .
}

(net/ipv4/af_inet.c)
 

Figure 11-3. TCP header (IPv4)



CHAPTER 11 ■ LAYER 4 PROTOCOLS

322

We further define a tcp_prot object and register it by calling the proto_register() method, like what we did 
with UDP:
 
struct proto tcp_prot = {
        .name                   = "TCP",
        .owner                  = THIS_MODULE,
        .close                  = tcp_close,
        .connect                = tcp_v4_connect,
        .disconnect             = tcp_disconnect,
        .accept                 = inet_csk_accept,
        .ioctl                  = tcp_ioctl,
        .init                   = tcp_v4_init_sock,
        . . .
};
 
(net/ipv4/tcp_ipv4.c)
 
static int __init inet_init(void)
{
        int rc;
        . . .
        rc = proto_register(&tcp_prot, 1);
        . . .
}

(net/ipv4/af_inet.c)
 

Note that in the tcp_prot definition, the init function pointer is defined to be the tcp_v4_init_sock() callback, 
which performs various initializations, like setting the timers by calling the tcp_init_xmit_timers() method, setting 
the socket state, and more. Conversely, in UDP, which is a much simpler protocol, the init function pointer was not 
defined at all because there are no special initializations to perform in UDP. We will discuss the tcp_v4_init_sock() 
callback later in this section.

In the next section, I will describe briefly the timers used by the TCP protocol.

TCP Timers
TCP timers are handled in net/ipv4/tcp_timer.c. There are four timers used by TCP:

•฀ Retransmit timer: Responsible for resending packets that were not acknowledged in a specified 
time interval. This can happen when a packet gets lost or corrupted. This timer is started after 
each segment is sent; if an ACK arrives before the timer expires, the timer is canceled.

•฀ Delayed ACK timer: Delays sending ACK packets. It is set when TCP receives data that must 
be acknowledged but does not need to be acknowledged immediately.

•฀ Keep Alive timer: Checks whether the connection is down. There are cases when sessions are 
idle for a long time and one side goes down. The Keep Alive timer detects such cases and calls 
the tcp_send_active_reset() method to reset the connection.

•฀ Zero window probe timer (also known as the persistent timer): When the receive buffer is full, 
the receiver advertises a zero window and the sender stops sending. Now, when a receiver sends 
a segment with a new window size and this segment is lost, the sender will keep waiting forever. 
The solution is this: when the sender gets a zero window, it uses a persistent timer to probe the 
receiver for its window size; when getting a non-zero window size, the persistent timer is stopped.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

323

TCP Socket Initialization
To use a TCP socket, a userspace application should create a SOCK_STREAM socket and call the socket() system call. 
This is handled in the kernel by the tcp_v4_init_sock() callback, which invokes the tcp_init_sock() method to  
do the real work. Note that the tcp_init_sock() method performs address-family independent initializations, and it 
is invoked also from the tcp_v6_init_sock() method. The important tasks of the tcp_init_sock() method are  
the following:

Set the state of the socket to be TCP_CLOSE.•฀

Initialize TCP timers by calling the •฀ tcp_init_xmit_timers() method.

Initialize the socket send buffer (•฀ sk_sndbuf) and receive buffer (sk_rcvbuf); sk_sndbuf is 
set to be to sysctl_tcp_wmem[1], which is by default 16384 bytes, and sk_rcvbuf is set to 
be sysctl_tcp_rmem[1], which is by default 87380 bytes. These default values are set in the 
tcp_init() method; the sysctl_tcp_wmem and sysctl_tcp_rmem arrays default values can 
be overridden by writing to /proc/sys/net/ipv4/tcp_wmem and to /proc/sys/net/ipv4/
tcp_rmem, respectively. See the “TCP Variables” section in Documentation/networking/ 
ip-sysctl.txt.

Initialize the out-of-order queue and the •฀ prequeue.

Initialize various parameters. For example, the TCP initial congestion window is initialized to •฀
10 segments (TCP_INIT_CWND), according to RFC 6928, “Increasing TCP’s Initial Window,” 
from 2013.

Now that you have learned how a TCP socket is initialized, I will discuss how to set up a TCP connection.

TCP Connection Setup
TCP connection setup and teardown and TCP connection properties are described as transitions in a state machine. 
At each given moment, a TCP socket can be in one specified state; for example, the socket enters the TCP_LISTEN 
state when the listen() system call is invoked. The state of the sock object is represented by its sk_state member. 
For a list of all available states, refer to include/net/tcp_states.h.

A three way handshake is used to set up a TCP connection between a TCP client and a TCP server:

First, the client sends a SYN request to the server. Its state changes to TCP_SYN_SENT.•฀

The server socket, which is listening (its state is TCP_LISTEN), creates a request socket to •฀
represent the new connection in the TCP_SYN_RECV state and sends back a SYN ACK.

The client that receives the SYN ACK changes its state to TCP_ESTABLISHED and sends an •฀
ACK to the server.

The server receives the ACK and changes the request socket into a child socket in the  •฀
TCP_ESTABLISHED state, as the connection is now established and data can be sent.

Note ■  to further look into the TCP state machine details, refer to the tcp_rcv_state_process() method  

(net/ipv4/tcp_input.c), which is the state machine engine, both for IPv4 and for IPv6. (It is called both from the  

tcp_v4_do_rcv() method and from the tcp_v6_do_rcv() method.)

The next section describes how packets are received from the network layer (L3) with TCP in IPv4.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

324

Receiving Packets from the Network Layer (L3) with TCP
The main handler for receiving TCP packets from the network layer (L3) is the tcp_v4_rcv() method  
(net/ipv4/tcp_ipv4.c). Let’s take a look at this function:
 
int tcp_v4_rcv(struct sk_buff *skb)
{
       struct sock *sk;
       . . .
 

First we make some sanity checks (for example, checking to see if the packet type is not PACKET_HOST or if the 
packet size is shorter than the TCP header) and discard the packet if there are any problems; then some initializations 
are made and also a lookup for a corresponding socket is performed by calling the __inet_lookup_skb() method, 
which first performs a lookup in the established sockets hash table by calling the __inet_lookup_established() 
method. In the case of a lookup miss, it performs a lookup in the listening sockets hash table by calling the  
__inet_lookup_listener() method. If no socket is found, the packet is discarded at this stage.
 
        sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
        . . .
        if (!sk)
                goto no_tcp_socket;
 

Now we check whether the socket is owned by some application. The sock_owned_by_user() macro returns 1 
when there is currently an application that owns the socket, and it returns a value of 0 when there is no application 
that owns the socket:
 
        if (!sock_owned_by_user(sk)) {
        . . .
                {
 

We arrive here if no application owns the socket, so it can accept packets. First we try to put the packet in the 
prequeue by calling the tcp_prequeue() method, as packets in the prequeue are processed more efficiently. The 
tcp_prequeue() will return false if processing in the prequeue is not possible (for example, when the queue has no 
space); in such a case, we will call the tcp_v4_do_rcv() method, which we will discuss shortly:
 
                if (!tcp_prequeue(sk, skb))
                        ret = tcp_v4_do_rcv(sk, skb);
        }
 

When an application owns the socket, it means that it is in a locked state, so it cannot accept packets. In such a 
case, we add the packet to the backlog by calling the sk_add_backlog() method:
 
                } else if (unlikely(sk_add_backlog(sk, skb,
                                                   sk->sk_rcvbuf + sk->sk_sndbuf))) {
                        bh_unlock_sock(sk);
                        NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
                        goto discard_and_relse;
                }
        }
 



CHAPTER 11 ■ LAYER 4 PROTOCOLS

325

Let’s take a look at the tcp_v4_do_rcv() method:
 
int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
{
 

If the socket is in the TCP_ESTABLISHED state, we call the tcp_rcv_established() method:
 
        if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
        . . .
                if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
                        rsk = sk;
                        goto reset;
                }
                return 0;
 

If the socket is in the TCP_LISTEN state, we call the tcp_v4_hnd_req() method:
 
        if (sk->sk_state == TCP_LISTEN) {
                struct sock *nsk = tcp_v4_hnd_req(sk, skb);
 
        }
 

If we are not in the TCP_LISTEN state, we invoke the tcp_rcv_state_process() method:
 
        if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
                rsk = sk;
                goto reset;
        }
        return 0;
 
reset:
        tcp_v4_send_reset(rsk, skb);
 
}
 

In this section, you learned about the reception of a TCP packet. In the next section, we conclude the TCP part of 
this chapter by describing how packets are sent with TCP in IPv4.

Sending Packets with TCP
As with UDP, sending packets from TCP sockets that were created in userspace can be done by several system calls: 
send(), sendto(), sendmsg(), and write(). Eventually all of them are handled by the tcp_sendmsg() method  
(net/ipv4/tcp.c). This method copies the payload from the userspace to the kernel and sends it as TCP segments.  
It is much more complicated than the udp_sendmsg() method.
 
int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
                size_t size)
{
        struct iovec *iov;
        struct tcp_sock *tp = tcp_sk(sk);
        struct sk_buff *skb;



CHAPTER 11 ■ LAYER 4 PROTOCOLS

326

        int iovlen, flags, err, copied = 0;
        int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
        bool sg;
        long timeo;
        . . .
 

I will not delve into all the details of copying the data from the userspace to the SKB in this method. Once the SKB 
is built, it is sent with the tcp_push_one() method that calls the tcp_write_xmit() method, which in turn invokes the 
tcp_transmit_skb() method:
 
static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
                            gfp_t gfp_mask)
{
 

The icsk_af_ops object (INET Connection Socket ops) is an address-family specific object. In the case of IPv4 
TCP, it is set to be an inet_connection_sock_af_ops object named ipv4_specific in the tcp_v4_init_sock() 
method. The queue_xmit() callback is set to be the generic ip_queue_xmit() method. See net/ipv4/tcp_ipv4.c.
 
    . . .
    err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
    . . .
}
(net/ipv4/tcp_output.c)
 

Now that you learned about TCP and UDP, you are ready to proceed to the next section which deals with the 
SCTP (Stream Control Transmission Protocol) protocol. The SCTP protocol combines features of both UDP and TCP, 
and it is newer than both of them.

SCTP (Stream Control Transmission Protocol)
The SCTP protocol is specified in RFC 4960 from 2007. It was first specified in 2000. It is designed for Public Switched 
Telephone Network (PSTN) signaling over IP networks, but it can be used with other applications. The IETF SIGTRAN 
(Signaling Transport) working group originally developed the SCTP protocol and later handed the protocol over to 
the Transport Area working group (TSVWG) for the continued evolvement of SCTP as a general-purpose transport 
protocol. LTE (Long Term Evolution) uses SCTP; one of the main reasons for this is that the SCTP protocol is able to 
detect when a link goes down or when packets are dropped very quickly, whereas TCP does not have this feature. 
SCTP flow-control and congestion-control algorithms are very similar in TCP and SCTP. The SCTP protocol uses 
a variable for the advertised receiver window size (a_rwnd); this variable represents the current available space in 
the receiver buffer. The sender cannot send any new data if the receiver indicates that a_rwnd is 0 (no receive space 
available). The important features of SCTP are the following ones:

SCTP combines the features of TCP and UDP. It is a reliable transport protocol with congestion •฀
control like TCP; it is a message-oriented protocol like UDP, whereas TCP is stream-oriented.

The SCTP protocol provides improved security with its 4-way handshake (compared to •฀
the TCP 3-way handshake) to protect against SYN flooding attacks. I will discuss the 4-way 
handshake later in this chapter in the “Setting Up an SCTP Association” section.

SCTP supports multihoming—that is, multiple IP addresses on both endpoints. This provides •฀
a network-level, fault-tolerance capability. I will discuss SCTP chunks later in this section.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

327

SCTP supports multistreaming, which means that it can send in parallel streams of data •฀
chunks. This can reduce the latency of streaming multimedia in some environments. I will 
discuss SCTP chunks later in this section.

SCTP uses a heartbeat mechanism to detect idle/unreachable peers in the case of •฀
multihoming. I will discuss the SCTP heartbeat mechanism later in this chapter.

After this short description of the SCTP protocol, we will now discuss how SCTP initialization is done. The  
sctp_init() method allocates memory for various structures, initializes some sysctl variables, and registers  
the SCTP protocol in IPv4 and in IPv6:
 
int sctp_init(void)
{
       int status = -EINVAL;
        . . .
        status = sctp_v4_add_protocol();
 
       if (status)
               goto err_add_protocol;
  
       /* Register SCTP with inet6 layer.  */
       status = sctp_v6_add_protocol();
       if (status)
               goto err_v6_add_protocol;
       . . .
}

(net/sctp/protocol.c)
 

The registration of the SCTP protocol is done by defining an instance of net_protocol (named sctp_protocol 
for IPv4 and sctpv6_protocol for IPv6) and calling the inet_add_protocol() method, quite similarly to what you 
saw in other transport protocols, like the UDP protocol. We also call the register_inetaddr_notifier() to receive 
notifications about adding or deleting a network address. These events will be handled by the sctp_inetaddr_event()  
method, which will update the SCTP global address list (sctp_local_addr_list) accordingly.

  static const struct net_protocol sctp_protocol = {
        .handler     = sctp_rcv,
        .err_handler = sctp_v4_err,
        .no_policy   = 1,
};

(net/sctp/protocol.c)
 
static int sctp_v4_add_protocol(void)
{
        /* Register notifier for inet address additions/deletions. */
        register_inetaddr_notifier(&sctp_inetaddr_notifier);
 
        /* Register SCTP with inet layer.  */
        if (inet_add_protocol(&sctp_protocol, IPPROTO_SCTP) < 0)
                return -EAGAIN;
 
        return 0;
}

(net/sctp/protocol.c)
 



CHAPTER 11 ■ LAYER 4 PROTOCOLS

328

Note ■  The sctp_v6_add_protocol() method (net/sctp/ipv6.c) is very similar, so we will not show it here.

Each SCTP packet starts with an SCTP header. I will now describe the structure of an SCTP header. I will start the 
discussion with SCTP chunks in the next section.

SCTP Packets and Chunks
Each SCTP packet has an SCTP common header, which is followed by one or more chunks. Each chunk can contain 
either data or SCTP control information. Several chunks can be bundled into one SCTP packet (except for three chunks 
that are used when establishing and terminating a connection: INIT, INIT_ACK, and SHUTDOWN_COMPLETE). These 
chunks use the Type-Length-Value (TLV) format that you first encountered in Chapter 2.

SCTP Common Header 

typedef struct sctphdr {
        __be16 source;
        __be16 dest;
        __be32 vtag;
        __le32 checksum;
} __attribute__((packed)) sctp_sctphdr_t;

(include/linux/sctp.h)
 

Following is a description of the members of the sctphdr structure:

•฀ source: SCTP source port.

•฀ dest: SCTP destination port.

•฀ vtag: Verification Tag, which is a 32 bit random value.

•฀ checksum: Checksum of SCTP common header and all chunks.

SCTP Chunk Header
The SCTP chunk header is represented by struct sctp_chunkhdr:
 
typedef struct sctp_chunkhdr {
        __u8 type;
        __u8 flags;
        __be16 length;
} __packed sctp_chunkhdr_t;

(include/linux/sctp.h)
 

The following is a description of the members of the sctp_chunkhdr structure:

•฀ type: The SCTP type. For example, the type of data chunks is SCTP_CID_DATA. See Table 11-2, 
Chunk types, in the “Quick Reference” section at the end of this chapter, and also see the  
chunk ID enum definition (sctp_cid_t) in include/linux/sctp.h.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

329

•฀ flags: Usually, all 8 bits in it should be set to 0 by the sender and ignored by the receiver. 
There are cases when different values are used. For example, in ABORT chunk, we use the  
T bit (the LSB) thus: it is set to 0 if the sender filled in the Verification Tag, and it is set to 1 if the 
Verification Tag is reflected.

•฀ length: The length of the SCTP chunk.

SCTP Chunk
The SCTP chunk is represented by struct sctp_chunk. Each chunk object contains the source and destination 
address for this chunk and a subheader (member of the subh union) according to its type. For example, for data 
packets we have the sctp_datahdr subheader, and for the INIT type we have the sctp_inithdr subtype:
 
struct sctp_chunk {
        . . .
        atomic_t refcnt;
 
        union {
                __u8 *v;
                struct sctp_datahdr        *data_hdr;
                struct sctp_inithdr        *init_hdr;
                struct sctp_sackhdr        *sack_hdr;
                struct sctp_heartbeathdr   *hb_hdr;
                struct sctp_sender_hb_info *hbs_hdr;
                struct sctp_shutdownhdr    *shutdown_hdr;
                struct sctp_signed_cookie  *cookie_hdr;
                struct sctp_ecnehdr        *ecne_hdr;
                struct sctp_cwrhdr         *ecn_cwr_hdr;
                struct sctp_errhdr         *err_hdr;
                struct sctp_addiphdr       *addip_hdr;
                struct sctp_fwdtsn_hdr     *fwdtsn_hdr;
                struct sctp_authhdr        *auth_hdr;
        } subh;
 
        struct sctp_chunkhdr    *chunk_hdr;
        struct sctphdr          *sctp_hdr;
 
        struct sctp_association *asoc;
 
        /* What endpoint received this chunk? */
        struct sctp_ep_common   *rcvr;
 
        . . .
         
        /* What is the origin IP address for this chunk?  */
        union sctp_addr source;
        /* Destination address for this chunk. */
        union sctp_addr dest;
 
        . . .
         



CHAPTER 11 ■ LAYER 4 PROTOCOLS

330

        /* For an inbound chunk, this tells us where it came from.
         * For an outbound chunk, it tells us where we'd like it to
         * go.  It is NULL if we have no preference.
         */
        struct sctp_transport *transport;
 
};

(include/net/sctp/structs.h)
 

We will now describe an SCTP association (which is the counterpart of a TCP connection).

SCTP Associations
In SCTP, we use the term association instead of a connection; a connection refers to communication between two 
IP addresses, whereas association refers to communication between two endpoints that might have multiple IP 
addresses. An SCTP association is represented by struct sctp_association:
 
struct sctp_association {
       ...
 
        sctp_assoc_t assoc_id;
 
        /* These are those association elements needed in the cookie.  */
        struct sctp_cookie c;
 
        /* This is all information about our peer.  */
        struct {
                struct list_head transport_addr_list;
 
                . . .
                __u16 transport_count;
                __u16 port;
                . . .
 
                struct sctp_transport *primary_path;
                struct sctp_transport *active_path;
 
        } peer;
 
        sctp_state_t state;
        . . .
        struct sctp_priv_assoc_stats stats;
};

(include/net/sctp/structs.h).
 

The following is a description of some of the important members of the sctp_association structure:

•฀ assoc_id: The association unique id. It’s set by the sctp_assoc_set_id() method.

•฀ c: The state cookie (sctp_cookie object) that is attached to the association.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

331

•฀ peer: An inner structure representing the peer endpoint of the association. Adding a peer is done 
by the sctp_assoc_add_peer() method; removing a peer is done by the sctp_assoc_rm_peer() 
method. Following is a description of some of the peer structure important members:

•฀ transport_addr_list: Represents one or more addresses of the peer. We can add 
addresses to this list or remove addresses from it by using the sctp_connectx() method 
when an association is established.

•฀ transport_count: The counter of the peer addresses in the peer address list  
(transport_addr_list).

•฀ primary_path: Represents the address to which the initial connection was made  
(INIT <--> INIT_ACK exchange). The association will attempt to always use the primary 
path if it is active.

•฀ active_path: The address of the peer that is currently used when sending data.

•฀ state: The state that the association is in, like SCTP_STATE_CLOSED or  
SCTP_STATE_ESTABLISHED. Various SCTP states are discussed later in this section.

Adding multiple local addresses to an SCTP association or removing multiple addresses from one can be done, 
for example, with the sctp_bindx() system call, in order to support the multihoming feature mentioned earlier. Every 
SCTP association includes a peer object, which represents the remote endpoint; the peer object includes a list of one 
or more addresses of the remote endpoint (transport_addr_list). We can add one or more addresses to this list 
by calling the sctp_connectx() system call when establishing an association. An SCTP association is created by the 
sctp_association_new() method and initialized by the sctp_association_init() method. At any given moment, 
an SCTP association can be in one of 8 states; thus, for example, when it is created, its state is SCTP_STATE_CLOSED. 
Later on, these states can change; see, for example, the “Setting Up an SCTP Association” section later in this chapter. 
These states are represented by the sctp_state_t enum (include/net/sctp/constants.h).

To send data between two endpoints, an initialization process must be completed. In this process, an 
SCTP association between these two endpoints is set; a cookie mechanism is used to provide protection against 
synchronization attacks. This process is discussed in the following section.

Setting Up an SCTP Association
The initialization process is a 4-way handshake that consists of the following steps:

One endpoint (“A”) sends an INIT chunk to the endpoint it wants to communicate with (“Z”). •฀
This chunk will include a locally generated Tag in the Initiate Tag field of the INIT chunk, and 
it will also include a verification tag (vtag in the SCTP header) with a value of 0 (zero).

After sending the INIT chunk, the association enters the SCTP_STATE_COOKIE_WAIT state.•฀

The other endpoint (“Z”) sends to “A” an INIT-ACK chunk as a reply. This chunk will include •฀
a locally generated Tag in the Initiate Tag field of the INIT-ACK chunk and the remote Initiate 
Tag as the verification tag (vtag in the SCTP header). “Z” should also generate a state cookie 
and send it with the INIT-ACK reply.

When “A” receives the INIT-ACK chunk, it leaves the SCTP_STATE_COOKIE_WAIT state. •฀
“A” will use the remote Initiate Tag as the verification tag (vtag in the SCTP header) in all 
transmitted packets from now on. “A” will send the state cookie it received in a COOKIE ECHO 
chunk. “A” will enter the SCTP_STATE_COOKIE_ECHOED state.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

332

When “Z” receives the COOKIE ECHO chunk, it will build a TCB (Transmission Control •฀
Block). The TCB is a data structure containing connection information on either side of an 
SCTP connection. “Z” will further change its state to SCTP_STATE_ESTABLISHED and reply 
with a COOKIE ACK chunk. This is where the association is finally established on “Z” and, at 
this point, this association will use the saved tags.

When “A” receives the COOKIE ACK, it will move from the SCTP_STATE_COOKIE_ECHOED •฀
state to the SCTP_STATE_ESTABLISHED state.

Note ■  An endpoint might respond to an INIT, INIT ACK, or COOKIE ECHO chunk with an ABORT chunk when some 

mandatory parameters are missing, or when receiving invalid parameter values. The cause of the ABORT chunk should be 

specified in the reply.

Now that you have learned about SCTP associations and how they are created, you will see how SCTP packets are 
received with SCTP and how SCTP packets are sent.

Receiving Packets with SCTP
The main handler for receiving SCTP packets is the sctp_rcv() method, which gets an SKB as a single parameter 
(net/sctp/input.c). First some sanity checks are made (size, checksum, and so on). If everything is fine, we proceed 
to check whether this packet is an “Out of the Blue” (OOTB) packet. A packet is an OOTB packet if it is correctly 
formed (that is, no checksum error), but the receiver is not able to identify the SCTP association to which this packet 
belongs. (See section 8.4 in RFC 4960.) The OOTB packets are handled by the sctp_rcv_ootb() method, which 
iterates over all the chunks of the packet and takes an action according to the chunk type, as specified in the RFC. 
Thus, for example, an ABORT chunk is discarded. If this packet is not an OOTB packet, it is put into an SCTP inqueue 
by calling the sctp_inq_push() method and proceeds on its journey with the sctp_assoc_bh_rcv() method or with 
the sctp_endpoint_bh_rcv() method.

Sending Packets with SCTP
Writing to a userspace SCTP socket reaches the sctp_sendmsg() method (net/sctp/socket.c). The packet is passed 
to the lower layers by calling the sctp_primitive_SEND() method, which in turn calls the state machine callback, 
sctp_do_sm() (net/sctp/sm_sideeffect.c), with SCTP_ST_PRIMITIVE_SEND. The next stage is to call  
sctp_side_effects(), and eventually call the sctp_packet_transmit() method.

SCTP HEARTBEAT
The HEARTBEAT mechanism tests the connectivity of a transport or path by exchanging HEARTBEAT and 
HEARTBEAT-ACK SCTP packets. It declares the transport IP address to be down once it reaches the threshold of a 
nonreturned heartbeat acknowledgment. A HEARTBEAT chunk is sent every 30 seconds by default to monitor the 
reachability of an idle destination transport address. This time interval is configurable by setting /proc/sys/net/
sctp/hb_interval. The default is 30000 milliseconds (30 seconds). Sending heartbeat chunks is performed by the 
sctp_sf_sendbeat_8_3() method. The reason for the 8_3 in the method name is that it refers to section 8.3 (Path 
Heartbeat) in RFC 4960. When an endpoint receives a HEARTBEAT chunk, it replies with a HEARTBEAT-ECHO chunk 
if it is in the SCTP_STATE_COOKIE_ECHOED state or the SCTP_STATE_ESTABLISHED state.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

333

SCTP Multistreaming
Streams are unidirectional data flows within a single association. The number of Outbound Streams and the number 
of Inbound Streams are declared during the association setup (by the INIT chunk), and the streams are valid during 
the entire association lifetime. A userspace application can set the number of streams by creating an sctp_initmsg 
object and initializing its sinit_num_ostreams and sinit_max_instreams, and then calling the setsockopt() method 
with SCTP_INITMSG. Initialization of the number of streams can also be done with the sendmsg() system call. 
This, in turn, sets the corresponding fields in the initmsg object of the sctp_sock object. One of the biggest reasons 
streams were added was to remove the Head-of-Line blocking (HoL Blocking) condition. Head-of-line blocking is a 
performance-limiting phenomenon that occurs when a line of packets is held up by the first packet—for example, in 
multiple requests in HTTP pipelining. When working with SCTP Multistreaming, this problem does not exist because 
each stream is sequenced separately and guaranteed to be delivered in order. Thus, once one of the streams is blocked 
due to loss/congestion, the other streams might not be blocked and data will continue to be delivered. This is due to 
that one stream can be blocked while the other streams are not blocked,

Note ■  Regarding using sockets for SCTP, I should mention the lksctp-tools project (http://lksctp.sourceforge.net/).  

This project provides a Linux userspace library for SCTP (libsctp), including C language header files (netinet/sctp.h), 

for accessing SCTP-specific application programming interfaces not provided by the standard sockets, and also some 

helper utilities around SCTP. I should also mention RFC 6458, “Sockets API Extensions for Stream Control Transmission 

Protocol (SCTP),” which describes a mapping of the Stream Control Transmission Protocol (SCTP) into the sockets API.

SCTP Multihoming
SCTP multihoming refers to having multiple IP addresses on both endpoints. One of the really nice features of SCTP 
is that endpoints are multihomed by default if the local ip address was specified as a wildcard. Also, there has been a 
lot of confusion about the multihoming feature because people expect that simply by binding to multiple addresses, 
the associations will end up being multihomed. This is not true because we implement only destination multihoming. 
In other words, both connected endpoints have to be multihomed for it to have true failover capability. If the local 
association knows about only a single destination address, there will be only one path and thus no multihoming.

With describing SCTP multihoming in this section, the SCTP part of this chapter has ended. In the next section,  
I will describe the DCCP protocol, which is the last transport protocol to be discussed in this chapter.

DCCP: The Datagram Congestion Control Protocol
DCCP is an unreliable, congestion-controlled transport layer protocol and, as such, it borrows from both UDP and 
TCP while adding new features. Like UDP, it is message-oriented and unreliable. Like TCP, it is a connection-oriented 
protocol and it also uses a 3-way handshake to set up the connection. Development of DCCP was helped by ideas 
from academia, through participation of several research institutes, but it has not been tested so far in larger-scale 
Internet setups. The use of DCCP would make sense, for instance, in applications that require minor delays and where 
a small degree of data loss is permitted, like in telephony and in streaming media applications.

Congestion control in DCCP differs from that in TCP in that the congestion-control algorithm (called CCID) can 
be negotiated between endpoints and congestion control can be applied on both the forward and reverse paths of a 
connection (called half-connections in DCCP). Two classes of pluggable congestion control have been specified so 
far. The first type is a rate-based, smooth “TCP-friendly” algorithm (CCID-3, RFC 4342 and 5348), for which there is 
an experimental small-packet variation called CCID-4 (RFC 5622, RFC 4828). The second type of congestion control, 

http://lksctp.sourceforge.net/


CHAPTER 11 ■ LAYER 4 PROTOCOLS

334

“TCP-like” (RFC 4341) applies a basic TCP congestion-control algorithm with selective acknowledgments (SACK, 
RFC 2018) to DCCP flows. At least one CCID needs to be implemented by endpoints in order to function. The first 
DCCP Linux implementation was released in Linux kernel 2.6.14 (2005). This chapter describes the implementation 
principles of the DCCPv4 (IPv4). Delving into the implementation details of individual DCCP congestion-control 
algorithms is beyond the scope of this book.

Now that I’ve introduced the DCCP protocol in general, I will describe the DCCP header.

DCCP Header
Every DCCP packet starts with a DCCP header. The minimum DCCP header length is 12 bytes. DCCP uses a variable-
length header, which can range from 12 to 1020 bytes, depending on whether short sequence numbers are used and 
which TLV packet options are used. DCCP sequence numbers are incremented for each packet (not per each byte as 
in TCP) and can be shortened from 6 to 3 bytes.
 
struct dccp_hdr {
        __be16  dccph_sport,
                dccph_dport;
        __u8    dccph_doff;
#if defined(__LITTLE_ENDIAN_BITFIELD)
        __u8    dccph_cscov:4,
                dccph_ccval:4;
#elif defined(__BIG_ENDIAN_BITFIELD)
        __u8    dccph_ccval:4,
                dccph_cscov:4;
#else
#error  "Adjust your <asm/byteorder.h> defines"
#endif
        __sum16 dccph_checksum;
#if defined(__LITTLE_ENDIAN_BITFIELD)
        __u8    dccph_x:1,
                dccph_type:4,
                dccph_reserved:3;
#elif defined(__BIG_ENDIAN_BITFIELD)
        __u8    dccph_reserved:3,
                dccph_type:4,
                dccph_x:1;
#else
#error  "Adjust your <asm/byteorder.h> defines"
#endif
        __u8    dccph_seq2;
        __be16  dccph_seq;
};

(include/uapi/linux/dccp.h)
 

The following is a description of the important members of the dccp_hdr structure:

•฀ dccph_sport: Source port (16 bit).

•฀ dccph_dport: Destination port (16 bit).

•฀ dccph_doff: Data offset (8 bits). The size of the DCCP header is in multiples of 4 bytes.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

335

•฀ dccph_cscov: Determines which part of the packet is covered in the checksum. Using partial 
checksumming might improve performance when it is used with applications that can tolerate 
corruption of some low percentage.

•฀ dccph_ccval: CCID-specific information from sender to receiver (not always used).

•฀ dccph_x: Extended Sequence Numbers bit (1 bit). This flag is set when using 48-bit Extended 
Sequence and Acknowledgment Numbers.

•฀ dccph_type: The DCCP header type (4 bits). This can be, for example, DCCP_PKT_DATA for 
a data packet or DCCP_PKT_ACK for an ACK. See Table 11-3, “DCCP packet types,” in the 
“Quick Reference” section at the end of this chapter.

•฀ dccph_reserved: Reserved for future use (1 bit).

•฀ dccph_checksum: The checksum (16 bit). The Internet checksum of the DCCP header and 
data, computed similarly to UDP and TCP. If partial checksums are used, only the length 
specified by dccph_cscov of the application data is checksummed.

•฀ dccph_seq2: Sequence number. This is used when working with Extended Sequence Numbers 
(8 bit).

•฀ dccph_seq: Sequence number. It is incremented by 1 for each packet (16 bit).

Note ■  DCCP sequence numbers depend on dccph_x. (For details, refer to the dccp_hdr_seq() method,  

include/linux/dccp.h).

Figure 11-4 shows a DCCP header. The dccph_x flag is set, so we use 48-bit Extended Sequence numbers.

Figure 11-4. DCCP header (the Extended Sequence Numbers bit is set, dccph_x=1)



CHAPTER 11 ■ LAYER 4 PROTOCOLS

336

DCCP Initialization
DCCP initialization happens much like in TCP and UDP. Considering the DCCPv4 case (net/dccp/ipv4.c), first a 
proto object is defined (dccp_v4_prot) and its DCCP specific callbacks are set; we also define a net_protocol object 
(dccp_v4_protocol) and initialize it:
 
static struct proto dccp_v4_prot = {
         .name                   = "DCCP",
         .owner                  = THIS_MODULE,
         .close                  = dccp_close,
         .connect                = dccp_v4_connect,
         .disconnect             = dccp_disconnect,
         .ioctl                  = dccp_ioctl,
         .init                   = dccp_v4_init_sock,
         . . .
         .sendmsg                = dccp_sendmsg,
         .recvmsg                = dccp_recvmsg,
         . . .
 
}
 
(net/dccp/ipv4.c)
 
   
static const struct net_protocol dccp_v4_protocol = {
        .handler        = dccp_v4_rcv,
        .err_handler    = dccp_v4_err,
        .no_policy      = 1,
        .netns_ok       = 1,
};

(net/dccp/ipv4.c)
 

Figure 11-5. DCCP header (the Extended Sequence Numbers bit is not set, dccph_x=0)

Figure 11-5 shows a DCCP header. The dccph_x flag is not set, so we use 24-bit Sequence numbers.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

337

We register the dccp_v4_prot object and the dccp_v4_protocol object in the dccp_v4_init() method:
 
static int __init dccp_v4_init(void)
{
         int err = proto_register(&dccp_v4_prot, 1);
  
         if (err != 0)
                 goto out;
  
         err = inet_add_protocol(&dccp_v4_protocol, IPPROTO_DCCP);
         if (err != 0)
                 goto out_proto_unregister;
(net/dccp/ipv4.c)
 

DCCP Socket Initialization
Socket creation in DCCP from userspace uses the socket() system call, where the domain argument (SOCK_DCCP) 
indicates that a DCCP socket is to be created. Within the kernel, this causes DCCP socket initialization via the  
dccp_v4_init_sock() callback, which relies on the dccp_init_sock() method to perform the actual work:
 
static int dccp_v4_init_sock(struct sock *sk)
{
        static __u8 dccp_v4_ctl_sock_initialized;
        int err = dccp_init_sock(sk, dccp_v4_ctl_sock_initialized);
 
        if (err == 0) {
                if (unlikely(!dccp_v4_ctl_sock_initialized))
                        dccp_v4_ctl_sock_initialized = 1;
                inet_csk(sk)->icsk_af_ops = &dccp_ipv4_af_ops;
        }
 
        return err;
}

(net/dccp/ipv4.c)
 

The most important tasks of the dccp_init_sock() method are these:

Initialization of the DCCP socket fields with sane default values (for example, the socket state •฀
is set to be DCCP_CLOSED)

Initialization of the DCCP timers (via the •฀ dccp_init_xmit_timers() method)

Initialization of the feature-negotiation part via calling the •฀ dccp_feat_init() method. 
Feature negotiation is a distinguishing feature of DCCP by which endpoints can mutually 
agree on properties of each side of the connection. It extends TCP feature negotiation and is 
described further in RFC 4340, sec. 6.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

338

Receiving Packets from the Network Layer (L3) with DCCP
The main handler for receiving DCCP packets from the network layer (L3) is the dccp_v4_rcv () method:
 
static int dccp_v4_rcv(struct sk_buff *skb)
{
        const struct dccp_hdr *dh;
        const struct iphdr *iph;
        struct sock *sk;
        int min_cov;
 

First we discard invalid packets. For example, if the packet is not for this host (the packet type is not  
PACKET_HOST), or if the packet size is shorter than the DCCP header (which is 12 bytes):
 
        if (dccp_invalid_packet(skb))
                  goto discard_it;
 

Then we perform a lookup according to the flow:
 
        sk = __inet_lookup_skb(&dccp_hashinfo, skb,
                               dh->dccph_sport, dh->dccph_dport);
 

If no socket was found, the packet is dropped:
 
        if (sk == NULL) {
               . . .
               goto no_dccp_socket;
        }
 

We make some more checks relating to Minimum Checksum Coverage, and if everything is fine, we proceed to 
the generic sk_receive_skb() method to pass the packet to the transport layer (L4). Note that the dccp_v4_rcv() 
method is very similar in structure and function to the tcp_v4_rcv() method. This is because the original author of 
DCCP in Linux, Arnaldo Carvalho de Melo, has worked quite hard to make the similarities between TCP and DCCP 
obvious and clear in the code.
 
         . . .
         return sk_receive_skb(sk, skb, 1);
         }

(net/dccp/ipv4.c)
 

Sending Packets with DCCP
Sending data from a DCCP userspace socket is eventually handled by the dccp_sendmsg() method in the kernel  
(net/dccp/proto.c). This parallels the TCP case, where the tcp_sendmsg() kernel method handles sending data from 
a TCP userspace socket. Let’s take a look at the dccp_sendmsg() method:
 
int dccp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
                  size_t len)
{
         const struct dccp_sock *dp = dccp_sk(sk);
         const int flags = msg->msg_flags;



CHAPTER 11 ■ LAYER 4 PROTOCOLS

339

        const int noblock = flags & MSG_DONTWAIT;
        struct sk_buff *skb;
        int rc, size;
        long timeo;
 

Allocate an SKB:
 
        skb = sock_alloc_send_skb(sk, size, noblock, &rc);
        lock_sock(sk);
        if (skb == NULL)
                goto out_release;
  
        skb_reserve(skb, sk->sk_prot->max_header);
 

Copy the data blocks from the msghdr object to the SKB:
 
        rc = memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len);
        if (rc != 0)
                goto out_discard;
 
        if (!timer_pending(&dp->dccps_xmit_timer))
                dccp_write_xmit(sk);
 

Depending upon the type of congestion control (window-based or rate-based) chosen for the connection, the  
dccp_write_xmit() method will cause a packet to be sent later (via dccps_xmit_timer() expiry) or passed on for 
immediate sending by the dccp_xmit_packet() method. This, in turn, relies on the dccp_transmit_skb() method to 
initialize the outgoing DCCP header and pass it to the L3-specific queue_xmit sending callback (using the ip_queue_xmit() 
method for IPv4, and the inet6_csk_xmit() method for IPv6). I will conclude our discussion about DCCP with a short 
section about DCCP and NAT.

DCCP and NAT
Some NAT devices do not let DCCP through (usually because their firmware is typically small, and hence does not 
support “exotic” IP protocols such as DCCP). RFC 5597 (September 2009) has suggested behavioral requirements for 
NATs to support NAT-ed DCCP communications. However, it is not clear to what extent the recommendations are put 
into consumer devices. One of the motivations for DCCP-UDP was the absence of NAT devices that would let DCCP 
through (RFC 6773, sec. 1). There is a detail that might be interesting in the comparison with TCP. The latter, by default, 
supports simultaneous open (RFC 793, section 3.4), whereas the initial specification of DCCP in RFC 4340, section 4.6 
disallowed the use of simultaneous-open. To support NAPT traversal, RFC 5596 updated RFC 4340 in September 2009 
with a “near simultaneous open” technique, which added one packet type (DCCP-LISTEN, RFC 5596, section 2.2.1) 
to the list and changed the state machine to support two more states (2.2.2) to support near-simultaneous open. The 
motivation was a NAT “hole punching” technique, which would require, however, that NATs with DCCP existed 
(same problem as above). As a result of this chicken-and-egg problem, DCCP has not seen much exposure over 
the Internet. Perhaps the UDP encapsulation will change that. But then it would no longer really be considered as a 
transport layer protocol.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

340

Summary
This chapter discussed four transport protocols: UDP and TCP, which are the most commonly used, and SCTP 
and DCCP, which are newer protocols. You learned the basic differences between these protocols. You learned 
that TCP is a much more complex protocol than UDP, as its uses a state machine and several timers and requires 
acknowledgments. You learned about the header of each of these protocols and about sending and receiving packets 
with these protocols. I discussed some unique features of the SCTP protocol, like multihoming and multistreaming.

The next chapter will deal with the Wireless subsystem and its implementation in Linux. In the “Quick Reference” 
section that follows, I will cover the top methods related to the topics discussed in this chapter, ordered by their 
context, and also I will present the two tables that were mentioned in this chapter.

Quick Reference
I will conclude this chapter with a short list of important methods of sockets and transport-layer protocols that we 
discussed in this chapter. Some of them were mentioned in this chapter. Afterward, there is one macro and three tables.

Methods
Here are the methods.

int ip_cmsg_send(struct net *net, struct msghdr *msg, struct ipcm_cookie *ipc);

This method builds an ipcm_cookie object by parsing the specified msghdr object.

void sock_put(struct sock *sk);

This method decrements the reference count of the specified sock object.

void sock_hold(struct sock *sk);

This method increments the reference count of the specified sock object.

int sock_create(int family, int type, int protocol, struct socket **res);

This method performs some sanity checks, and if everything is fine, it allocates a socket by calling the sock_alloc() 
method, and then calling net_families[family]->create. (In the case of IPv4, it is the inet_create() method.)

int sock_map_fd(struct socket *sock, int flags);

This method allocates a file descriptor and fills in the file entry.

bool sock_flag(const struct sock *sk, enum sock_flags flag);

This method returns true if the specified flag is set in the specified sock object.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

341

int tcp_v4_rcv(struct sk_buff *skb);

This method is the main handler to process incoming TCP packets arriving from the network layer (L3).

void tcp_init_sock(struct sock *sk);

This method performs address-family independent socket initializations.

struct tcphdr *tcp_hdr(const struct sk_buff *skb);

This method returns the TCP header associated with the specified skb.

int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, size_t size);

This method handles sending TCP packets that are sent from userspace.

struct tcp_sock *tcp_sk(const struct sock *sk);

This method returns the tcp_sock object associated with the specified sock object (sk).

int udp_rcv(struct sk_buff *skb);

This method is the main handler to process incoming UDP packets arriving from the network layer (L3).

struct udphdr *udp_hdr(const struct sk_buff *skb);

This method returns the UDP header associated with the specified skb.

int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, size_t len);

This method handles UDP packets that are sent from the userspace.

struct sctphdr *sctp_hdr(const struct sk_buff *skb);

This method returns the SCTP header associated with the specified skb.

struct sctp_sock *sctp_sk(const struct sock *sk);

This method returns the SCTP socket (sctp_sock object) associated with the specified sock object.

int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,  

size_t msg_len);

This method handles SCTP packets that are sent from userspace.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

342

struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 

const struct sock *sk, sctp_scope_t scope, gfp_t gfp);

This method allocates and initializes a new SCTP association.

void sctp_association_free(struct sctp_association *asoc);

This method frees the resources of an SCTP association.

void sctp_chunk_hold(struct sctp_chunk *ch);

This method increments the reference count of the specified SCTP chunk.

void sctp_chunk_put(struct sctp_chunk *ch);

This method decrements the reference count of the specified SCTP chunk. If the reference count reaches 0, it frees it 
by calling the sctp_chunk_destroy() method.

int sctp_rcv(struct sk_buff *skb);

This method is the main input handler for input SCTP packets.

static int dccp_v4_rcv(struct sk_buff *skb);

This method is the main Rx handler for processing incoming DCCP packets that arrive from the network layer (L3).

int dccp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,  

size_t len);

This method handles DCCP packets that are sent from the userspace.

Macros
And here is the macro.

sctp_chunk_is_data( )

This macro returns 1 if the specified chunk is a data chunk; otherwise, it returns 0.

Tables
Take a look at the tables used in this chapter.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

343

Table 11-1. TCP and UDP prot_ops objects

prot_ops callback TCP UDP

release inet_release inet_release

bind inet_bind inet_bind

connect inet_stream_connect inet_dgram_connect

socketpair sock_no_socketpair sock_no_socketpair

accept inet_accept sock_no_accept

getname inet_getname inet_getname

poll tcp_poll udp_poll

ioctl inet_ioctl inet_ioctl

listen inet_listen sock_no_listen

shutdown inet_shutdown inet_shutdown

setsockopt sock_common_setsockopt sock_common_setsockopt

getsockopt sock_common_getsockopt sock_common_getsockopt

sendmsg inet_sendmsg inet_sendmsg

recvmsg inet_recvmsg inet_recvmsg

mmap sock_no_mmap sock_no_mmap

sendpage inet_sendpage inet_sendpage

splice_read tcp_splice_read -

compat_setsockopt compat_sock_common_setsockopt compat_sock_common_setsockopt

compat_getsockopt compat_sock_common_getsockopt compat_sock_common_getsockopt

compat_ioctl inet_compat_ioctl inet_compat_ioctl

Table 11-2. Chunk types

Chunk Type Linux Symbol Value

Payload Data SCTP_CID_DATA 0

Initiation SCTP_CID_INIT 1

Initiation Acknowledgment SCTP_CID_INIT_ACK 2

Selective Acknowledgment SCTP_CID_SACK 3

Heartbeat Request SCTP_CID_HEARTBEAT 4

(continued)

Note ■  See the inet_stream_ops and the inet_dgram_ops definitions in net/ipv4/af_inet.c.



CHAPTER 11 ■ LAYER 4 PROTOCOLS

344

Table 11-3. DCCP packet types

Linux Symbol Description

DCCP_PKT_REQUEST Sent by the client to initiate a connection (the first part of the three-way initiation 
handshake).

DCCP_PKT_RESPONSE Sent by the server in response to a DCCP-Request (the second part of the three-way 
initiation handshake).

DCCP_PKT_DATA Used to transmit application data.

DCCP_PKT_ACK Used to transmit pure acknowledgments.

DCCP_PKT_DATAACK Used to transmit application data with piggybacked acknowledgment information.

DCCP_PKT_CLOSEREQ Sent by the server to request that the client close the connection.

DCCP_PKT_CLOSE Used by the client or the server to close the connection; elicits a DCCP-Reset packet 
in response.

DCCP_PKT_RESET Used to terminate the connection, either normally or abnormally.

DCCP_PKT_SYNC Used to resynchronize sequence numbers after large bursts of packet loss.

DCCP_PKT_SYNCACK Acknowledge a DCCP_PKT_SYNC.

Chunk Type Linux Symbol Value

Heartbeat Acknowledgment SCTP_CID_HEARTBEAT_ACK 5

Abort SCTP_CID_ABORT 6

Shutdown SCTP_CID_SHUTDOWN 7

Shutdown Acknowledgment SCTP_CID_SHUTDOWN_ACK 8

Operation Error SCTP_CID_ERROR 9

State Cookie SCTP_CID_COOKIE_ECHO 10

Cookie Acknowledgment SCTP_CID_COOKIE_ACK 11

Explicit Congestion Notification Echo (ECNE) SCTP_CID_ECN_ECNE 12

Congestion Window Reduced (CWR) SCTP_CID_ECN_CWR 13

Shutdown Complete SCTP_CID_SHUTDOWN_COMPLETE 14

SCTP Authentication Chunk (RFC 4895) SCTP_CID_AUTH 0x0F

Transmission Sequence Numbers SCTP_CID_FWD_TSN 0xC0

Address Configuration Change Chunk SCTP_CID_ASCONF 0xC1

Address Configuration Acknowledgment Chunk SCTP_CID_ASCONF_ACK 0x80

Table 11-2. (continued)


